US Army TACOM

Army Transformation Reliability
Improvement Program
"Implementing Ultra-Reliability"
Presented to

46th Annual Fuze Conference

Robert J. Kuper
Executive for Reliability & Quality

1 May 2002

TACOM - Mobility and Firepower for America's Army

Outline

- The Army's Reliability Problems
 - What are the Concerns & Issues?
- The Requirements for Transformation
 - What are the Challenges?
- The Solution Set
 - The Current Reliability Paradigm
 - Changes to the Standards of Practice
 - Road Map to "The New Paradigm"
- The Technical Issues & Challenges
- Evolving Strategies to Achieve "Ultra-Reliability"
 - Disciplines
 - Six Sigma
 - Capability Maturity Model
 - Change Management

Background

- Major Army Problem
 - Poor Demonstrated Reliability in Operational Testing
 - '85-'95 59% failure rate in Operational testing
 - '96-'00 80% failure rate in Operational testing
- Systemic Problems with RAM Engineering Processes
 - Poor performance with older technologies
 - Concerns for FCS and Objective Force tech infusions
 - Improve on the Basics
 - Utilize the Advanced Tools, Techniques and, Methods
 - Root Cause
 - Eroding Core Competencies
 - Reduced Visibility of the RAM engineering Discipline AND reduced presence of Senior RAM Engineer in Design, Process, T&E, Log/Supportability Decision(s) Making Processes.
- MNS for OBJ Force: Zero System failures in 7 Day Medium to High OPTEMPO Combat Pulse without maintenance, Logistical or rearm support.
 - Today's systems are "Reliable".... Right?
 - M1 @ NTC 7 day combat pulse....46% system failure rate at 3 days......
- CASCOM Thrust for AAN in late '90's "Ultra-Reliable Systems"
 - Need World class Reliability, Best Practices, State of the art techniques and tools
- Army Workshop on Ultra-Reliability, AMSAA studies, CASCOM/Rand Studies
 - PEO Integration & Implementation for the Future Six Sigma Framework
 - TACOM Executive for Reliability & Quality Change Agent

Our Reliability Track Record Is Not Good

1985-1995

1996-2000

Most Of Our Systems Fail To Achieve Reliability Requirements In OT *And The Trend Appears To Be Downwards*

source: ATEC/AEC

Our Current 'Reliable' Systems Are Not Reliable Enough

FCS – Where we need to be:

" A deployed FCS force must be capable of operating, at a medium to high optempo, for at least one week without maintaining, rearming or resupply." (Draft MNS)

Where we are: >46% of M1A1's have a mission critical failure in 3 days during a week of medium to high OPTEMPO at NTC

>40% for M2's during 7 day combat pulse.

Army Reliability Practices Need To Change If We Are To Achieve Goals Like That Of The FCS

source: AMSAA

Better Reliability Is Needed To Reduce Log Footprint

And The Cost To Support Our Current Reliability Levels Is Large

Problems with Ammunition

General Issues

- Stockpile is Aging rapidly. Average age close to 15-20 years. Many different failure mechanisms
- Unique applications causing accelerated degradation PREPO Storage on ship and on land, Uploaded Ammo, Desert Storage
- > Significant Shortfall in Precision & Preferred munitions
- Industrial Base significantly reduced over the past 10 years
- Surge & Replenishment are questionable
- Single source for many critical components
- Mantech investments only by Congressional plus-ups
- ➤ Training consuming 85 to 95% of Ammo budget Little Modernization, Meaningless unfulfilled AAO's
- > Surveillance grossly under-funded NO Predictive capability

Specific Problems

- DU Corrosion
- Combustible cases swelling, separation
- ➤ HE Melt-pour Artillery & Mortar
- ➤ Mixed Propellant grains cause accelerated degradation
- Propellant bag deterioration Incompatibility of clothe & propellant degradation products
- Ineffective Training Copperhead

Historical Problems with Fuzes & Firing Mechanisms

"Just a few examples"

- M577 Lubricant drying with age and temperature
- ➤ M732 Battery leakers
- M762 Uncured Potting
- Lance Missile Tantulum capacitors
- Reserve Batteries Power density, rise time, active time, eccentric dynamic motion
- ➢ Gator, GEMSS, Volcano Tungsten Bridge wires fuses
- M831 Tank Proximity Fuze Chip on Board
- > FASCAM HED Batteries process problems
- > Pyrotechnic aging and processing problems
- ➤ M582 Fuze Inflight premature detonations with M650 Rocket-On
- > Etc....etc.....

Bottom-line: Have not understood Physics of Failure and Aging Mechanisms. Components, Design, Process, Aging, Human Factors, Environments, etc... All Causes or Drivers of Safety, Reliability and Availability problems.

New Ammo Components & Technologies Where Reliability must be well Understood

Submunitions

Self Destruct Fuzes

Autonomous Launch Platforms

Seismic & Acoustic Sensors

IR Target Sensors

Polynitrocubanes

Laser Designation

Autonomous Search - Kill Mechanisms

Software in every system

Chip-on-Board

Ball Grid Array

Microelectronics

Micro electro-mechanical MEMS

Combustible Cases

Composites

Plastics - Organics

Power Supplies

Ignition Trains

Soldering Technologies

COTS - parts and processes

Rocket motors & propulsion

RAID, Parachute, RAD materiels

Identification Friend or Foe (IFF)

And Then, Must be able to Assure Reliability of Systems of Systems

"Defining the Problems & Issues with Reliability & RAM Engineering"

Initial Data Sources – 3 years of effort invested

- Workshops on Reliability and Ultra-Reliability.
- Continuing AMSAA Reliability Studies for MILDEP '00 '01
 GEN Kern and now '02 LTG Caldwell
- > ATEC/DTC Studies
- > PEO/PM Results
- > Operational Support Command Readiness Assessments
- Six Sigma Program @ PEO-GCS, PEO-Ammo & TACOM-ARDEC
- > etc.....

Workshops & Reliability Studies – Findings

> Processes and Areas which require corrective actions:

- > Policy
- > Reliability Tools
- > T&E and M&S
- > Training
- Supportability
- Systems Engineering
- > Program Management
- > Field Data Feedback
- Contracting for Reliability
- > Etc.....
- Need for Army Integration Lead

Primary Focus on

<u>Defining</u>

Some emphasis on

<u>Measure, Analyses</u>

<u>Improvement</u> and

Control

The Current Paradigm – We accept Failure because we know we can Fix things Hence the enormous Logistical Tail

Some Proposed Solutions

"To attain Ultra-Reliability"

- Redundancy
- Focused testing
- Designed-In Ultra-Reliability Inherent reliability
- Diagnostics and Prognostics
- Design Modularity On-board Spares
- Commonality Common Chassis, Common Components
- > Reduced Weight equals reduced failures and reduced logistics
- Better Trained, More Responsive Logistical Supportability
- Contracting for reliability

No Single Silver Bullet Requires a combination of strategies and More

Requires a Paradigm Change

Strategy to Achieve New Ultra-Reliability Paradigm

- Identify the Issues/Problems with current "Standard of Performance"
- Design the Road Map to Ultra-reliability World-class Tools/Processes
- Apply Six Sigma Discipline to entire effort
- Build Core Competencies Use CMMI for Organizational Success
- Run Pilot Program on FCS and RECAP Programs
- Champions: GEN Kern, CG, AMC and LTG Caldwell, MILDEP for AAE, LTG Mahan, DA DCSLOG
- Change Agent: Bob Kuper, Executive for Reliability & Quality, TACOM
- > Technical Experts:
 - AMSAA, CASCOM, LIA, Contractors/Industrial Base/Academia
- Peer Review National Academy of Science Nat'l Labs
- Create the Infrastructure to tie in Technical Expertise, FCS LSI, Industrial Base and User Interfaces
- Deploy New Paradigm via Virtual Framework of the AMC Quality Federation!
 - Sallie Flavin, Asst DCS-RDA Quality Champion @ AMC
 - Steve French ASAALT Champion for Reliability

Official Army Pilot Program

- > Create a Partnership with Key Organizations that will make the Ultra-Reliability Paradigm a functional reality for LC Assurance
- Key partners: AMSAA, CASCOM, TACOM, PEO's, NASA, National Labs, Industry, Professional Societies
- Official Pilot Program sanctioned by AAE & MILDEP assures resources and visibility
 - Quarterly reviews with MILDEP
 - Look at all FCS and Army RECAP Programs
- Approval targeted for June 2002

Areas of Focus

- > Create a New Standard of Practice for a "Newly evolving Paradigm"
- New Paradigm Assures Pulse Reliability for the FCS Zero System Failures in 7 Day Combat Pulse with rapid Maintenance Cycle preceding next Pulse.
- Based on Physics of Failure Predictive Engineering
- Use the Basics, Advanced & Best Proven Tools
- Invest in the Best technologies
- Visibility of the RAM Engineering Discipline within Systems Engineering
 - In LC Cost, Performance, Supportability, T&E, M&S.....
- Visibility of Senior RAM Engineer in Design and Process Decision Making. "Co-equal" with lead Designer
- > "EARLY" RAM Engineering in Concept Development
- Continuous Reliability Growth Focus

Ammo Implications:

Critical component of the System of Systems Approach
Requires Very High Inherent Design Reliability
Must be resistant to degradation given frequent deployments
Durability - Withstand varied Environmental Exposures, Process Control
Apply sensors & tracking technology for ITV, TAV and Diagnostic/Prognostics

AMSAA Inputs

- Physics of Failure
 - > Electronics
 - Mechanical
- Prognostics
- Onboard Spares & Redundancy Assessments
- Reliability Case Training
- DAU Reliability Training
- Reliability Incentives
- Systems-of-Systems Modeling
- Reliability Growth & Test Design
- FCS Reliability of Technology Assessments

Designing In Reliability

Potential FCS
Reliability Enablers

Contracting for Reliability

Reliability Modeling

Reliability Challenges

Physics of Failure Software Tools

Solid Modeling Tools

Dynamic Simulation Tools

Finite Element Modeling Tools

Fatigue Analysis
Tools

Thermal Fluid Analysis Tools

Mechanical Physics of Failure - Dynamic Fatigue Analysis

TACONI-ARDEC

IAV Engineering Analysis Team (EAT) **Test & Evaluation CAD Strain Time History Automotive Durability Component Stress Analysis** 3 Principal Stress vs Time **FEA NASTRAN ANSYS** Component Durability Analysis

Stress Correlation - FEA Rainflow Analysis

CASCOM – TRADOC Inputs

- Logistical Strategies
 - Maintainability, On-board spares
 - Prognostics and Diagnostics
- Field Data Feedback
 - Failure data from weapons, vehicles and equipment
 - Focus for Designed-In Reliability
 - Studies of Pulse reliability impacts and strategies
- Training & Doctrine Requirements development
 - Supportability ICT
 - RAM ICT

TACOM-ARDEC Inputs

- Lead Change Agent Program Coordinator
- Six Sigma Lead
- Reliability Core Competency Development
- > AMC Quality Federation Deployment
- PEO/Program Management Interfaces
- Technical Specialty areas:
 - Reliability Engineering Methods
 - Predictive Engineering & PoF LC Strategies
 - LC Environmental Analyses (MILSTD 810F)
 - Accelerated Life Testing & Aging sciences/protocols
 - Predictive Model Development
 - Program Management/Systems Engineering
 - Core Competency Development
 - Organizational and Process Improvement thru CMMI

Why PoF & Predictive Engineering?

PREMATURE STOCKPILE DETERIORATION

DESIGN & PRODUCTION DEFICIENCIES & TRANSPORTATION & STORAGE CONDITIONS

A FUNCTION OF:

not understanding the "real" environments

not using adequate life cycle tools to assure and assess materiel robustness against premature failure/deterioration

The Army has experienced significant materiel losses through undetected degradation during deployment

Exudate

Deterioration Sensitive ...

Marginal Design...

Life Cycle Analysis – Physics of Failure based Aging Studies - Model Development

Life Cycle Analysis Model Applications

Physics of Failure
Life Limiting
Components

Improve the Design Control Processes

Predictive Algorithms

Optimize Stockpile Management

- Sustainment
- Readiness

Life Cycle Analysis - Sustainment

<mark>ITEM Manager PEO/PM/SMCA_</mark>

Surveillance Frequency

Maintenance

Condition Code

Priority Usage

Prepositioning

Foreign Military Sales

Demil

Obsolescence

•Total LC Log Process

Total Ownership Costs

•Cost As an Independent
Variable (CAIV)

Life Cycle Simulation

Decision Morphology

War

Define, Measure, Analyze, Improve, Control

Objectives

- Army Program:
 - Correct Army's Systemic Reliability Problems
 - Reform the application of the RAM Engineering Discipline
 - Create and Implement A New Paradigm for LC Assurance
 - Create and Implement the Army's "Ultra-Reliability" or Transformation Reliability Improvement Program via Official Army Pilot Programs
 - Institute a Continuous Improvement Process
- Black Belt Project # 1:
 - Develop an Army Program for the Application of State-ofthe-Art RAM Engineering Discipline.
 - —Identify HOW to Correct the Systemic Problems
 - —Baseline Program for UR Achievement in the Future Combat System.
 - Design the Roadmap

Simplified Process Flow Diagram

Reliability Core Competency Simplified Process Flow Diagram

Simplified Process Flow Diagram

Reliability Core Competency Simplified Process Flow Diagram

Simplified Process Flow Diagram

Six Sigma - WBS - Level 1

Summary

- Without significant changes, Objective Force equipment will likely experience the same level of unreliability as current weapon systems. We MUST create a Paradigm change and maintain the discipline to continuously improve.
- Reliability must be designed in upfront
 - The tools and technology exist.
 - Strategies and "Standards of Practice" can be orchestrated for success with Disciplined implementation.
 - High reliability does not need to come with a high price tag.
- Need a strong Army Team, Champions, and Change Agent
- Contracting for reliability is key. If reliability is not a specific contractor priority, then we will likely not receive a reliable product.
- Discipline in the form of 6 Sigma and Capability Maturity Model (CMM) being used for program and organizational success assurance.
- Official Army Pilot Program target 30 June 02